123 research outputs found

    The Role of Representations in Executive Function: Investigating a Developmental Link between Flexibility and Abstraction.

    Get PDF
    Young children often perseverate, engaging in previously correct, but no longer appropriate behaviors. One account posits that such perseveration results from the use of stimulus-specific representations of a situation, which are distinct from abstract, generalizable representations that support flexible behavior. Previous findings supported this account, demonstrating that only children who flexibly switch between rules could generalize their behavior to novel stimuli. However, this link between flexibility and generalization might reflect general cognitive abilities, or depend upon similarities across the measures or their temporal order. The current work examined these issues by testing the specificity and generality of this link. In two experiments with 3-year-old children, flexibility was measured in terms of switching between rules in a card-sorting task, while abstraction was measured in terms of selecting which stimulus did not belong in an odd-one-out task. The link between flexibility and abstraction was general across (1) abstraction dimensions similar to or different from those in the card-sorting task and (2) abstraction tasks that preceded or followed the switching task. Good performance on abstraction and flexibility measures did not extend to all cognitive tasks, including an IQ measure, and dissociated from children's ability to gaze at the correct stimulus in the odd-one-out task, suggesting that the link between flexibility and abstraction is specific to such measures, rather than reflecting general abilities that affect all tasks. We interpret these results in terms of the role that developing prefrontal cortical regions play in processes such as working memory, which can support both flexibility and abstraction

    The practice of going helps children to stop:The importance of context monitoring in inhibitory control

    Get PDF
    How do we stop ourselves during ongoing action? Recent work implies that stopping per se is easy given sufficient monitoring of contextual cues signaling the need to change action. We test key implications of this idea for improving inhibitory control. Seven- to 9-year old children practiced stopping an ongoing action, or monitoring for cues that signaled the need to go again. Both groups subsequently showed better response inhibition in a Stop-Signal task than active controls, and practice monitoring yielded a dose-response relationship. When monitoring practice was optimized to occur while children engaged in responding, the greatest benefits were observed – even greater than from practicing stopping itself. These findings demonstrate the importance of monitoring processes in developing response inhibition, and suggest promising new directions for interventions

    Flexible rule use: Common neural substrates in children and adults

    Get PDF
    AbstractFlexible rule-guided behavior develops gradually, and requires the ability to remember the rules, switch between them as needed, and implement them in the face of competing information. Our goals for this study were twofold: first, to assess whether these components of rule-guided behavior are separable at the neural level, and second, to identify age-related differences in one or more component that could support the emergence of increasingly accurate and flexible rule use over development. We collected event-related fMRI data while 36 children aged 8–13 and adults aged 20–27 performed a task that manipulated rule representation, rule switching, and stimulus incongruency. Several regions – left dorsolateral prefrontal cortex (DLPFC), left posterior parietal cortex, and pre-supplementary motor area – were engaged by both the rule representation and the rule-switching manipulations. These regions were engaged similarly across age groups, though contrasting timecourses of activation in left DLPFC suggest that children updated task rules more slowly than did adults. These findings support the idea that common networks can contribute to a variety of executive functions, and that some developmental changes take the form of changes in temporal dynamics rather than qualitative changes in the network of brain regions engaged

    Metacognitive processes in executive control development:The case of reactive and proactive control

    Get PDF
    Young children engage cognitive control reactively in response to events, rather than proactively preparing for events. Such limitations in executive control have been explained in terms of fundamental constraints on children’s cognitive capacities. Alternatively, young children might be capable of proactive control but differ from older children in their meta-cognitive decisions regarding when to engage proactive control. We examined these possibilities in three conditions of a task-switching paradigm, varying in whether task cues were available before or after target onset. Reaction times, ERPs, and pupil dilation showed that 5-year-olds did engage in advance preparation, a critical aspect of proactive control, but only when reactive control was made more difficult, whereas 10-year-olds engaged proactive control whenever possible. These findings highlight meta-cognitive processes in children’s cognitive control, an understudied aspect of executive control development
    corecore